Part 1 – Securing Your Logins With ASP.Net MVC (This post)
Part 2 - Securing Web.API Requests With JSON Web Tokens

An archetectural patterns that is becoming more popular is using ASP.Net MVC with a Web.API layer servicing the web front end via angular.js or similar technology. A kind of hybrid SPA with all the benefits that ASP.Net bring to the table. This is a two part primer running through what I do to secure logins to MVC applications. In part two I will expand on this post to cover how to secure the Web.API layer utilizing the security built into ASP.Net.

If you ever go to a web site and you cannot remember your password, you will most likely have requested a password reminder. If you get sent your current password in plain text, then that is bad news. It means the website is storing passwords in plain text and if they get hacked then they will have access to those passwords, and knowing the fact that people have a tendency to use the same password on multiple sites then they could compromise multiple sites that you use. It is really important to salt and hash your passwords for storage in the database. By doing this, you can do a string comparison against the hash and not the actual password. Here I will go through the process in code.

As usual you will have a login screen asking for username (or email address) and password. I won't go into the MVC/Razor side here, just the important code.

Take in the two form values
The LookupUser method on the SecurityService is where the magic happensThis method looks up the User from the database via a UserRepository and appends the salt to the password the user has provided. I explain what salts and hashes are a little later on, but for now know they are just a random string representation of a passkey. This combination of password and salt are then passed into the GetPasswordHashAndSalt method of the PasswordHash class.The GetPasswordHashAndSalt method reads the string into a byte array and encrypts it using SHA256, then returns a string representation of it back to the calling method. This is then the hash of the salted password which should be equal to the value in the database. On line 19 of the SecurityService class the repository does another database look-up to get the User that matches both the email address and hash value. OK, so how do we get those hashes and salts in the database in the first place? When a new user account is set up you need to generate a random salt like this:-You then store the usual user details in the database along with the salt and the hashAndSalt values in place of the password. By generating a new salt each time an account is created you minimize the risk that a hacker will get the salt and regenerate the passwords from the hashAndSalt value. Now back to the login POST method on the controller. Once the user has been authenticated in the system, you need to create a cookie for the ASP.Net forms authentication to work. First create a ticket that stores information such as the user logged in.Where LoggedInUser is the valid User object we got from the database earlier. To check for a valid ticket throughout the site, you can decorate each action method with [Authorize] filter attributes, or you could do the whole site and just have [AllowAnonymous] attributes on the login controller actions. To do this for the whole site firstly add a new AuthorizeAttribute to the FilterConfig.cs file inside App_Start like this:-Then in the Application_AuthenticateRequest method to the global.asax.cs file add this:-This method will check every request coming in to see if it has a valid FormsAuthentication ticket. If it doesn't then it will redirect the user to the default location specified in the web.config file.